Bitcoin Mining Allocation Binance Research

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

RESEARCH REPORT ABOUT ARYACOIN

RESEARCH REPORT ABOUT ARYACOIN
Author: Gamals Ahmed, CoinEx Business Ambassador

https://preview.redd.it/a7jv4azk86u51.jpg?width=1600&format=pjpg&auto=webp&s=e4a4dbb5afacd5747076beaa59e6343b805c3392

ABSTRACT

Aryacoin is a new cryptocurrency, which allows for decentralized, peer to peer transactions of electronic cash. It is like Bitcoin and Litecoin, but the trading of the coin occurs on sales platforms that have no restriction to use. Further, it was created with the goal of addressing the double spend issues of Bitcoin and does so using a timestamp server to verify transactions. It works by taking the hash of a block of items to be timestamped and widely publishing the hash. The timestamp proves that the data must have existed at the time in order to get the hash. Each timestamp then includes the previous timestamp in its hash, forming a chain.
The Aryacoin team is continuously developing new use cases for the coin, including exchanges where users can exchange the coins without any fees or restrictions, and offline options where the coins can be bought and sold for cash. The coins can also be used on the company’s other platform, mrdigicoin.io. Along with the coin, there is a digital wallet that can be created and controlled by the user entirely, with no control being retained by the Aryacoin team.

1.INTRODUCTION

The concept of Blockchain first came to fame in October 2008, as part of a proposal for Bitcoin, with the aim to create P2P money without banks. Bitcoin introduced a novel solution to the age-old human problem of trust. The underlying blockchain technology allows us to trust the outputs of the system without trusting any actor within it. People and institutions who do not know or trust each other, reside in different countries, are subject to different jurisdictions, and who have no legally binding agreements with each other, can now interact over the Internet without the need for trusted third parties like banks, Internet platforms, or other types of clearing institutions.
When bitcoin was launched it was revolutionary allowing people to transfer money to anytime and anywhere with very low transaction fees . It was decentralized and their is no third party involved in the transaction , only the sender and receiver were involved.
This paper provide a solution to the double-spending problem using a peer-to-peer distributed timestamp server to generate computational proof of the chronological order of transactions.The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes. Bitcoin was made so that it would not be controlled or regulated but now exchanges and governments are regulating bitcoin and other cryptocurrencies at every step. Aryacoin was developed to overcome these restrictions on a free currency.
Aryacoin is a new age cryptocurrency, which withholds the original principle on which the concept of cryptocurrency was established. Combining the best in blockchain technology since the time of its creation, Aryacoin strives to deliver the highest trading and mining standards for its community.

1.1 OVERVIEW ABOUT ARYACOIN

Aryacoin is a new age cryptocurrency, which withholds the original principle on which the concept of cryptocurrency was established. Combining the best in blockchain technology since the time of its creation, Aryacoin strives to deliver the highest trading and mining standards for its community.
Aryacoin is a blockchain based project that allows users to access their wallet on the web and mobile browsers, using their login details.
Aryacoin can be mined; it also can be exchanged by other digital currencies in several world-famous exchanges such as Hitbtc, CoinEx, P2pb2b, WhiteBit, Changelly and is also listed in reputable wallets such as Coinomi and Guarda.
Aryacoin is a coin, which can be used by anyone looking to use cryptocurrency which allows them to keep their privacy even when buying/selling the coin along with while using the coin during transactions. Proof of work and cryptographic hashes allows transactions to verified.
Stable Fee Per AYA is a unique feature of Aryacoin, so by increasing the amount or volume of the transaction, there is no change in the fee within the network, which means that the fee for sending an amount less than 1 AYA is equal to several hundred million AYA. Another unique feature of Aryacoin is the undetectability of transactions in Explorer, such as the DASH and Monero, of course, this operation is unique to Aryacoin.
Using Aryacoin digital currency, like other currencies, international transactions can be done very quickly and there are no limitations in this area as the creators claim.
Aryacoin aims to allow users to access the Aryacoin wallet via the web and mobile browsers using their login details.
Aryacoin is a peer-to-peer electronic cash system that enables users to send and receive payments directly from one party to another, and allow them to transfer funds across borders with no restriction or third party involvement. The blockchain-based system embraces the digital signature, which prevents double spending and low transfer fees, which enables users to transfer huge amounts with very low fees. The proof-of-work consensus mechanism allows each transaction to be verified and confirmed, while anonymity enables users to use the coin anywhere at any time.
According to the website of the operation, each wallet is divided into 2 or more AYA wallet addresses for each transaction, and depending on the volume of the transaction block, the origin, and destination of transactions in the network can not be traced and displayed to the public.
In fact, each wallet in Aryacoin consists of a total of several wallets. The number of these wallets increases per transaction to increase both security and privacy. Aryacoin also uses the dPoW protocol. In the dPoW protocol, a second layer is added to the network to verify transactions, which makes “51% attack” impossible even with more than half of the network hash, and blocks whose Blockchain uses this second layer of security never run the risk of 51% attacks.
AYA has been listed on a number of crypto exchanges, unlike other main cryptocurrencies, it cannot be directly purchased with fiats money. However, You can still easily buy this coin by
first buying Bitcoin from any large exchanges and then transfer to the exchange that offers to trade this coin.

1.1.1 ARYACOIN HISTORY

Aryacoin (AYA) is a new cryptocurrency, which has been created by a group of Iranian developers, is an altcoin which allows for decentralised, peer to peer transactions of electronic cash without any fees whatsoever. Along with the coin, there is a digital wallet that can be created and managed by the user entirely, with no control being retained by the Aryacoin team.
Aryacoin’s founder, Kiumars Parsa, has been a fan of alternative currencies and particularly Bitcoin.
We see people from all around the world using Blockchain technology and the great benefits that came with it and it then that I decided to solve this puzzle for find a way of bringing the last missing piece to the jigsaw. The idea for Aryacoin was born.” Parsa said.
Parsa and his team of Iranian ex-pats not only persevered but expedited the project and just a year later, in the summer of 2019, the first version of Aryacoin was released. In 2020, Aryacoin is the first and only Iranian coin listed on CMC.
Parsa goes on to state that it is now the strength of the community that has invested in the coin that will ultimately drive its success, alongside its robust technology and appealing 0% network fees.
We have thousands of voices behind Aryacoin. People for the people make this coin. It is a massive shout out for democracy. This had made us base the whole team strategy on the benefits for both our users and our traders.
One key example is that the network fee on AYA Blockchain is 0%. Yes, absolutely nothing, which which differentiates us from other networks. What also differentiates us from other coins is that we have AYAPAY which is the first cryptocurrency Gateway in the world which does not save funds on third party storage with all funds being forwarded directly to any wallet address that the Gateway owner requests”.
So for the first time ever, and unlike other gateways, incoming funds will be saved on the users account with submitted withdrawal requests then made on the Gateway host website. In AYAPAY which has also been developed by the Aryacoin team, all funds without extra fees or extra costs will directly forwarded to users wallets. We have named this technology as CloudWithdrawal.
We are continuously challenging ourselves as it is a crowded marketplace. We are striving to have a safer Blockchain against 51% attacks, faster confirmations speeds of transactions, cheaper network fee, growing the market by cooperation with Top tier Exchangers.

1.1.2 ARYACOIN’S MAIN GOAL

Aryacoin’s main goal is to educate people and give them the freedom to use cryptocurrency in any way they want. Aryacoin empowers the users to transfer, pay, trade cryptocurrency from any country around the globe.
Platforms that have been created by Aryacoin Team, as well as those that will go live in future, operate on the same principle and exclude absolutely no one.

1.1.3 PROBLEM ARYACOIN SEEKS TO SOLVE

Aryacoin aims to provide a long-term solution to the problem of double spending, which is still common in the crypto market. The developers of the system have created a peer-to-peer distributed timestamp server that generates computational proof of the transactions as they occur.
Besides, the system remains secure provided honest nodes control more CPU power than any cooperating group of attacker nodes. While Bitcoin was designed not to be regulated or controlled, many exchanges and governments have put regulatory measures on the pioneer cryptocurrency at every step. Aryacoin aims to overcome these restrictions as a free digital currency.

1.1.4 BENEFITS OF USING ARYACOIN

Aryacoin solution offers the following benefits:
  • Real-time update: whether you’re going on a holiday or a business trip, no problem. You can access your coins all over the world.
  • Instant operations: Aryacoin makes it quite easy for you to use your digital wallet and perform various operations with it.
  • Safe and secure: all your data is stored encrypted and can only be decrypted with your private key, seed, or password.
  • Strong security: The system has no control over your wallet. You are 100% in charge of your wallet and funds.

1.1.5 ARYACOIN FEATURES

1. Anonymity
The coin provides decent level of anonymity for all its users. The users can send their transactions to any of the public nodes to be broadcasted , the transaction sent to the nodes should be signed by the private key of the sender address . This allows the users to use the coin anywhere any time , sending transactions directly to the node allows users from any place and country .
2. Real Life Usage
aryacoin’s team is continuously developing new and innovative ways to use the coins , they are currently developing exchanges where the users can exchange the coins without any fees and any restrictions . They also are currently developing other innovative technologies, which would allow users to spend our coins everywhere and anywhere.
3. Offline Exchanges
They are also working with different offline vendors which would enable them to buy and sell the coins directly to our users on a fixed/variable price this would allow easy buy/sell directly using cash . This would allow the coins to be accessible to users without any restrictions which most of the online exchanges have, also increase the value and number of users along with new ways to spend the coin. This would increase anonymity level of the
coin. In addition, introduce new users into the cryptomarket and technology. Creating a revolution, which educates people about crypto and introduce them to the crypto world, which introduces a completely new group of people into crypto and a move towards a Decentralized future!
4. Transactions
When it comes to transactions, Aryacoin embraces a chain of digital signatures, where each owner simply transfers the coin to the next person by digitally signing a hash of the previous transaction and the public key of the next owner. The recipient can then verify the signatures to confirm the chain of ownership. Importantly, Aryacoin comes with a trusted central authority that checks every transaction for double spending.
5. Business Partner with Simplex
Aryacoin is the first and only Iranian digital currency that managed to obtain a trading license in other countries.
In collaboration with the foundation and financial giant Simplex, a major cryptocurrency company that has large companies such as Binance, P2P, Changelly, etc. Aryacoin has been licensed to enter the world’s major exchanges, as well as the possibility of purchasing AYA through Credit Cards, which will begin in the second half of 2020.
Also, the possibility of purchasing Aryacoin through Visa and MasterCard credit cards will be activated simultaneously inside the Aryacoin site. plus, in less than a year, AYA will be placed next to big names such as CoinCapMarket, Coinomi, P2P, Coinpayments and many other world-class brands today.

1.1.6 WHY CHOOSE ARYACOIN?

If you want to use a cryptocurrency that allows you to keep your privacy online even when buying and selling the coins, the Aryacoin team claims that AYA is the way to go. Aryacoin is putting in the work: with more ways to buy and sell, and fixing the issues that were present in the original Bitcoin, plus pushing the boundaries with innovative solutions in cryptocurrencies. You can get started using Aryacoin (AYA) payments simply by having a CoinPayments account!

1.1.7 ARYANA CENTRALIZED EXCHANGE

Aryana, the first Iranian exchange is a unique platform with the following features:
  • The first real international Persian exchange that obtains international licenses and is listed in CoinMarketCap.
  • The first Iranian exchange that has been cooperating with a legal and European exchange for 3 years.
  • The possibility of trading in Tomans (available currency in Iran) at the user’s desired price and getting rid of the transaction prices imposed by domestic sites inside Iran.
  • There is an internal fee payment plan by Iranian domestic banks for depositing and withdrawing Tomans for Aryacoin holders in Aryana Exchange.
  • The number that you see on the monitor and in your account will be equal to the number that is transferred to your bank account without a difference of one Rial.
  • The last but not least, noting the fact that there is a trading in Tomans possibility in Aryana exchange.
Aryana Exchange is using the most powerful, fastest, and most expensive server in the world, Google Cloud Platform (GCP), which is currently the highest quality server for an Iranian site, so that professional traders do not lag behind the market even for a second.
The feature of Smart Trading Robots is one of the most powerful features for digital currency traders. Digital cryptocurrency traders are well aware of how much they will benefit from smart trading robots. In the Aryana exchange, it is possible to connect exchange user accounts to intelligent trading bots and trade even when they are offline.
The injection of $ 1 million a day in liquidity by the WhiteBite exchange to maintain and support the price of Tether and eliminate the Tether fluctuations with Bitcoin instabilities used by profiteers to become a matter of course.

1.1.8 HOW DOES ARYACOIN WORK?

Aryacoin (AYA) tries to ensure a high level of security and privacy. The team has made sure to eliminate any trading restrictions for the network users: no verification is required to carry out transactions on AYA, making the project truly anonymous, decentralized, and giving it a real use in day-to-day life. The Delayed-Proof-of-Work (dPoW) algorithm makes the Aryacoin blockchain immune to any attempts of a 51% attack. AYA defines a coin as a chain of digital signatures — each owner transfers the coin to the next owner by digitally signing the hash of the previous transaction and the public key of the next owner, and the receiver verifies the signatures and the chain of ownership.

2. ARYACOIN TECHNOLOGY

2.1 PROOF-OF-WORK

They use a proof-of-work system similar to Adam Back’s Hashcash to implement a distributed timestamp server on a peer-to-peer basis, rather than newspaper or Usenet publications. The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash.
For their timestamp network, they implement the proof-of-work by incrementing a nonce in the block until a value is found that gives the block’s hash the required zero bits. Once the CPU effort has been expended to make it satisfy the proof-of-work, the block cannot be changed without redoing the work. As later blocks are chained after it, the work to change the block would include redoing all the blocks after it.
The proof-of-work also solves the problem of determining representation in majority decision making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority decision is represented by the longest chain, which has the greatest proof-of-work effort invested in it. If honest nodes control a majority of CPU power, the honest chain will grow the fastest and outpace any competing chains. To modify a past
block, an attacker would have to redo the proof-of-work of the block and all blocks after it, then catch up with, and surpass the work of the honest nodes.

2.2 NETWORK

The steps to run the network are as follows:
  • New transactions are broadcast to all nodes.
  • Each node collects new transactions into a block.
  • Each node works on finding a difficult proof-of-work for its block.
  • When a node finds a proof-of-work, it broadcasts the block to all nodes.
  • Nodes accept the block only if all transactions in it are valid and not already spent.
This is a very simple system that makes the network fast and scalable, while also providing a decent level of anonymity for all users. Users can send their transactions to any of the public nodes to be broadcast, and the private key of the sender’s address should sign any transaction sent to the nodes. This way, all transaction info remains strictly confidential. It also allows users to send transactions directly to the node from any place at any time and allows the transferring of huge amounts with very low fees.

2.3 AYAPAY PAYMENT SERVICES GATEWAY:

According to creators Aryacoin, the development team has succeeded in inventing a new blockchain technology for the first time in the world, which is undoubtedly a big step and great news for all digital currency enthusiasts around the world.
This new technology has been implemented on the Aryacoin AYAPAY platform and was unveiled on October 2. AYAPAY payment platform is the only payment gateway in the world that does not save money in users’ accounts and transfers incoming coins directly to any wallet address requested by the gateway owner without any additional transaction or fee.
In other similar systems or even systems such as PayPal, money is stored in the user account.

2.4 CONSENSUS ALGORITHM IN ARYACOIN

The devs introduced the Delayed-Proof-of-Work (dPoW) algorithm, which represents a hybrid consensus method that allows one blockchain to take advantage of the security provided by the hashing power of another blockchain. The AYA blockchain works on dPoW and can use such consensus methods as Proof-of-Work (PoW) or Proof-of-Stake (PoS) and join to any desired PoW blockchain. The main purpose of this is to allow the blockchain to continue operating without notary nodes on the basis of its original consensus method. In this situation, additional security will no longer be provided through the attached blockchain, but this is not a particularly significant problem. dPoW can improve the security level and reduce energy consumption for any blockchain.

2.5 DOUBLE-SPEND PROBLEM AND SOLUTION

One of the main problems in the blockchain world is that a receiver is unable to verify whether or not one of the senders did not double-spend. Aryacoin provides the solution, and has established a trusted central authority, or mint, that checks every transaction for double-spending. Only the mint can issue a new coin and all the coins issued directly from the mint are trusted and cannot be double-spent. However, such a system cannot therefore
be fully decentralized because it depends on the company running the mint, similar to a bank. Aryacoin implements a scheme where the receiver knows that the previous owners did not sign any earlier transactions. The mint is aware of all transactions including which of them arrived first. The developers used an interesting solution called the Timestamp Server, which works by taking a hash of a block of items to be ‘timestamped’ and publishing the hash. Each timestamp includes the previous timestamp in its hash, forming a chain. To modify a block, an attacker would have to redo the proof-of-work of all previous blocks, then catch up with, and surpass the work of the honest nodes. This is almost impossible, and makes the network processes more secure. The proof-of-work difficulty varies according to circumstances. Such an approach ensures reliability and high throughput.

3. ARYACOIN ROADMAP

April 2019: The launch of Aryacoin; AYA ICO, resulting in over 30BTC collected
December 2019: The launch of AYA Pay
April 2020: The successful Hamedan Hardfork, supported by all AYA exchanges, aimed at integrating the dPoW algorithm, improving the security of the AYA blockchain.
June 2020: Aryana Exchange goes live, opening more trading opportunities globally
July 2020: The enabling of our Coin Exchanger
November 2020: The implementation of Smart Contracts into the Aryacoin Ecosystem
Q1 2021: Alef B goes live (more details coming soon)

4. THE NUCYBER NETWORK COMMUNITY & SOCIAL

Website: https://aryacoin.io/
Explorer: https://explorer.aryacoin.io/
Github: https://github.com/Aryacoin/Aryacoin
Twitter: 1.1k followers https://twitter.com/AryacoinAYA
Reddit: 442 members https://github.com/nucypher
Instagram: 3.8k followers https://www.instagram.com/mrdigicoin/ Telegram: 5.9k subscribers https://t.me/AYA_Global

5. SUMMARY

Aryacoin (AYA) is a new age cryptocurrency that combines the best of the blockchain technology and strives to deliver high trading and mining standards, enabling users to make peer-to-peer decentralized transactions of electronic cash. Aryacoin is part of an ecosystem that includes payment gateway Ayapay and the Ayabank. AYA has a partnership with the Microsoft Azure cloud platform, which provides the ability to develop applications and store data on servers located in distributed data centers. The network fee for the AYA Blockchain is 0%. In Ayapay service, which has been developed by the Aryacoin team, all funds without extra fees or costs are directly forwarded to users’ wallets with technology called CloudWithdrawal. The devs team is introducing new use cases including exchanges where users will exchange AYA without any restrictions. You can buy AYA on an exchange of your choice, create an Aryacoin wallet, and store it in Guarda.

6. REFERENCES

1) https://coincodex.com/crypto/aryacoin/
2) https://www.icosandstos.com/coin/Aryacoin%20AYA/YuXO60UPF3
3) https://www.publish0x.com/iran-and-cryptocurrency/a-brief-introduction-of-aryacoin-first-ever-iranian-cryptocu-xoldlom
4) https://techround.co.uk/cryptocurrency/aryacoin-the-digital-currency-created-by-iranians/
5) https://bitcoinexchangeguide.com/aryacoin/
6) https://blog.coinpayments.net/coin-spotlight/aryacoin
7) https://guarda.com/aryacoin-wallet
submitted by CoinEx_Institution to Coinex [link] [comments]

How DAO users can truly control their voting rights

How DAO users can truly control their voting rights
https://blockchaintopbuzz.medium.com/how-dao-users-can-truly-control-their-voting-rights-f945c9c6b65e
Aelf proposed a solution that gives the control of the voting rights back to users by classifying token permissions.
As of today, there are still few complete businesses. In addition to mining and building trading platforms, it is difficult to create a complete business model. Moreover, various trading platforms have gradually grown into enterprises with comprehensive products in the blockchain industry, including wallets, nodes, lending, mining pools, etc.
At the same time, cloud services can reduce the cost of building small exchanges, but they can also lead to big trading platforms monopolizing data. For example, some Internet companies provide free cloud services in order to collect more valuable data.
Currently, Ethereum, which has the richest DeFi ecosystem, is gradually upgrading to V2.0, and its consensus protocol will also be upgraded to PoS. Governance voting can be regarded as the most important feature in the PoS ecosystem.
This year, Yearn.Finance rose to sudden prominence. But due to the governance problem, its community members initiated a hard fork, resulting in YFII. Another DeFi project, YAM, had a unfixable rebase function error. The founding team apologized for the error and announced a ‘Migration Plan’, which will turn the project over to the community.
For a while, governance voting became all the rage. However, the increasingly bigger trading platforms have been criticized by users in governance voting. Is there a proper solution to handling the relationship between the trading platform and governance voting?

What will we lose when trading platforms monopolize the blockchain industry?

In June 2018, during the BP node election before the EOS mainnet launch, node voting began to have a crisis of confidence between token holders and the trading platform. it is widely believed that the top 20 holders of trading platform wallets held about 40% of all the EOS in circulation.
Since then, many trading platforms have enabled the “User Authorization” interface. EOS holders can authorize the token voting rights to the trading platform, who will vote on behalf of the users. The rule caused a backlash from users, forcing these trading platforms to change the rule immediately so that EOS holders could vote on their preferred BP nodes.
After the EOS BP node votes, whether the trading platform has the token voting right has been occasionally discussed, but fewhave noticed it.
Two years later, Justin Sun, founder of TRON, made a commercial acquisition of Steemit, a decentralized social networking platform. After the acquisition was announced, the Steemit community launched a soft fork to resist the project being controlled by TRON. However, Justin Sun voted with the support of trading platforms such as Binance, Huobi and Poloniex to prevent a soft fork.
After being questioned by users, Binance and Huobi said that they would no longer interfere in the voting of the Steemit community. However, hkdev 404 of the Steem community again reveived votes from Huobi accounts. It is said that nearly 40 million votes were cast during the incident, accounting for about 10% of the total circulation of STEEM tokens.
There is no doubt that when the trading platform monopolizes the industry, we will lose our voting right.
How do we defend our voting rights
The fact that the ownership of the tokens belongs to the holders is indisputable, but what about the voting rights of the tokens deposited on the trading platform? How can we defend our voting rights after trading platforms have monopolized the industry?

Trading Platform Model

Traditional centralized trading platforms will assign to each user a separate deposit address. After depositing, the depositedamount will be added into the cold wallet and hot wallet. When users want to withdraw their tokens, the trading platform will transfer the tokens out of the hot wallet. If there is insufficient balance in the hot wallet, then the tokens will be transferred from the cold wallet to the hot wallet, and then be withdrawn.
Under the traditional centralized trading platform model, once users transfer their tokens into a trading platform, it means thetoken ownership (including voting rights) is also transferred to that trading platform.
The aelf solution: classify token permissions and claim back voting rights
For the issue of “voting rights” between token holders and centralized trading platforms, aelf, a decentralized cloud computing blockchain network, has proposed a solution: to establish an aelf Centre Asset Management Contract on the chain. The contract can limit the funds entering the exchange and define different permissions to control the assets.
The main feature of the aelf Centre Asset Management Contract is to create the “Main Virtual Address of the Trading Platform”.
Each exchange has a main virtual address, which can only be used for transfer operation, but not for voting, trading and other operations. As a result, the exchange cannot misappropriate users’ assets for voting. At the same time, the assets of the primary virtual address are publicly available on the chain, which makes it more difficult for the exchange to misappropriate assets.
At the same time, the aelf Centre Asset Management Contract also has the function of “address definition”. The exchange can open different permissions to different addresses, such as opening different permissions according to the amount, transactions exceeding a certain amount can only be given the greenlight by using multiple signatures, and the assets can be frozen through the contract when the assets of the trading platform are stolen, etc.
For the users of the trading platform, the access of the trading platform to the aelf Center Asset Management Contract function will not undermine user experience. The virtual system address of the aelf Center Asset Management Contract will assign a virtual address to each user, which offers the same user experience as the traditional mode.
For the trading platform, each deposit address constructed by the virtual address system is generated by the algorithm and does not need to be carried out on the blockchain. This means that the trading platform does not need to manage a large number of private keys, and there is no risk that the private keys will be lost.
On the most important “voting rights” issue, the aelf Center Asset Management Contract will assign to each user a separate virtual address for voting:
Voting address = Hash (Exchange Main Address + Token + “VOTE”)
Voting process: the tokens are transferred from the main virtual address of the exchange to the special “voting address” for voting, and are then voted. After voting, the tokens are withdrawn from the voting address back to the main virtual address.
We can see that the aelf Centre Asset Management Contract proposed by aelf can improve the efficiency of the trading platform without affecting user experience. In addition, it solves the problem that users would lose their voting rights.
According to the data on Crypto Mode, the market value of PoS tokens has exceeded $33 billion without counting Ethereum. In the field of crypto, it is the biggest ecosystem next to Bitcoin. The most important function of PoS is vote staking. faced with bigtrading platforms, if the status quo continues, retail investors will gradually lose their “voting rights” that belong to them.

Comparison of Market Value of PoS tokens (Source: Crypto Mode)
The emergence of DAO offers an alternative to trading platforms who misappropriate users’ tokens, but it still can not change this situation. Of course, DAO will not die out. Small communities will still use DAO for community governance. The idea behind the design of aelf is to start from the underlying trading platform and solve this issue at the source. Whether the solution can work still takes time. However, as a member of the crypto industry, we should understand the importance of “voting rights”, and cannot allow the exchange to seize our rights at will.
Recently, aelf has also announced its DeFi plan, which includes a new blockchain 3.0 project with a large number of new technical features, such as cross chain function, virtual address and cloud services. Aelf also proposed a set of interoperability solutions with ERC-20 tokens. It can directly access the ETH ecosystem, allow ETH-based applications and wallets to directly access it, and maintain the interoperability with ETH. And aelf will provide a high-performance smart contract operation platform and cloud services that can support cross chain interaction. Users on major cloud servers can easily run aelf’s services and adjust the scale of cloud according to their own business needs.
The implementation of a slew of tools, cloud services and interoperability solutions developed by aelf means that centralized transactions can be directly connected to the aelf network, realizing one-click adaptation to the DeFi ecosystem. With aelf, CeFi and DeFi are able to learn from and complement each other.
submitted by Floris-Jan to aelfofficial [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Top 25 Questions and answer About Cryptocurrency

Top 25 Questions and answer About Cryptocurrency
https://preview.redd.it/dju4oz1g16c51.jpg?width=2400&format=pjpg&auto=webp&s=fe57edcd81ffa31bff95fe3026055020f7720dce
Cryptocurrencies have now become a buzz word. Despite the resilience that it faced initially, cryptocurrencies have come a long way. There are a total of around 5000 cryptocurrencies circulating in the market. If you plan to make a career in this domain, you need to run through the following questions.
1. What is a cryptocurrency?
Cryptocurrency is a digital currency that is transacted on a distributed ledger platform or decentralized platform or Blockchain. Any third party does not govern it, and the transaction takes place between peer-to-peer.
2. When was the first Cryptocurrency introduced?
The first Cryptocurrency or Bitcoin was introduced in the year 2009.
3. Who created Cryptocurrency?
Satoshi Nakamoto gave the first Cryptocurrency. The white paper for the same was given in 2008 and a computer program in 2009.
4. What are the top three cryptocurrencies?
The following are the three cryptocurrencies:
• Bitcoin (BTC) $128bn.
• Ethereum (ETH) $19.4bn.
• XRP (XRP) $8.22bn.
5. Where can you store Cryptocurrency?
Cryptocurrencies are stored in a digital wallet, and this is accessible via public and private keys. A public key is the address of your wallet, and the private key is the one that helps you in executing the transaction.
6. Which is the safest wallet for Cryptocurrency?
The most secured wallet for Cryptocurrency is a hardware wallet. It is not connected to the internet, and thus it is free from a hacking attack. It is also known as a cold wallet.
7. From where I can purchase cryptocurrencies?
The easiest way to buy Cryptocurrency is via crypto exchange. You can several crypto exchanges like Coinbase, Bitbuy, CHANGENow, Kraken etc.
8. What are the ten popular crypto exchanges?
The following are the best ten popular crypto exchange:
  1. Coinbase
  2. Binance
  3. FTX
  4. Cex.io
  5. Local Bitcoins
  6. Bitfinex
  7. LocalBitcoins
  8. Bittrex
  9. Coinmama
  10. Kraken
9. What are the key features of Blockchain?
We all know that Bitcoin or any other cryptocurrency runs on the Blockchain platform, which gives it some additional features like decentralization, transparency, faster speed, immutability and anonymity.
10. What is AltCoin?
It means Alternative Coin. All the cryptocurrencies other than Bitcoin are alternative coins. Similar to Bitcoin, AltCoins are not regulated by any bank. The market governs them.
11. Are cryptocurrency sites regulated?
Most cryptocurrency websites are not regulated.
12. How are Cryptocurrency and Blockchain related?
Blockchain platform aids cryptocurrency transactions, which makes use of authentication and encryption techniques. Cryptography enables technology for Cryptocurrency, thus ensuring secure transactions.
13. What is a nonce?
The mining process works on the pattern of validating transactions by solving a mathematical puzzle called proof-of-work. The latter determine a number or nonce along with a cryptographic hash algorithm to produce a hash value lower than a predefined target. The nonce is a random value used to vary the value of hash so that the final hash value meets the hash conditions.
14. How is Cryptocurrency different from other forms of payment?
Cryptocurrency runs on Blockchain technology, which gives it an advantage of immutability, cryptography, and decentralization. All the payments are recorded on the DLT, which is accessible from any part of the world. Moreover, it keeps the identity of the user anonymous.
15. Which is the best Cryptocurrency?
Several cryptocurrencies have surged into the market, and you can choose any of these. The best way to choose the right cryptocurrencies is to look at its market value and assess its performance. Some of the prominent choices are Bitcoin, Ethereum, Litecoin, XRP etc.
16. What is the worst thing that can happen while using Cryptocurrency?
One of the worst things could be you losing your private keys. These are the passwords that secure your wallet, and once they are lost, you cannot recover them.
17. What is the private key and public key?
Keys secure your cryptocurrency wallet; these are public key and private key. The public key is known to all, like your bank account number, on the hand, the private key is the password which protects your wallet and is only known to you.
18. How much should one invest in Cryptocurrency?
Well, investing in Cryptocurrency is a matter of choice. You can study how the market is performing, and based on the best performing cryptocurrency, you can choose to invest. If you are new to this, then it’s advisable that you must start small.
19. From where can one buy Bitcoin using Fiat currency?
Two of the popular choices that you have are Coinbase and Binance, where you can purchase Cryptocurrency using fiat currency.
20. Are the coins safe on exchanges?
All the exchanges have a high level of security. Besides, these are regularly updated to meet the security requirements, but it’s not advisable to leave your coins on them since they are prone to attack. Instead, you can choose a hard wallet to store your cryptocurrencies, which are considered the safest.
21. What determines the price of cryptocurrencies?
The price of cryptocurrencies is determined by the demand and supply in the market. Besides, how the market is performing also determines the price of cryptocurrencies.
22. What are some of the prominent cryptocurrencies terminologies?
There are jargons which are continuously used by people using cryptocurrencies are:
DYOR: Do Your Own Research
Dapps: Decentralized Applications
Spike: Shapr increase in the price of the Cryptocurrency
Pump: Manipulated increase in the price of a cryptocurrency
Dump: Shapr decline in the price of Cryptocurrency
23. How can I check the value of cryptocurrencies?
Various platforms will give you an update on the price of cryptocurrencies. You can keep a tab on them and check the pricing of cryptocurrencies.
24. What are the advantages of using digital currencies?
There are various advantages like you are saved from double-spending, the transactions are aster and secure. Moreover, digital currencies now have global acceptance.
25. What is the difference between cryptocurrencies and fiat currencies?
Cryptocurrencies are digital currencies which run on the Blockchain platform and are not governed by any government agencies, while the fiat currencies are the ones which are governed by authorities and government.
Conclusion- This was all the FAQs pertaining to cryptocurrency, for more such information keep coming back to Blockchain Council.
submitted by Blockchain_org to BlockchainStartups [link] [comments]

What Is Proof of Work (PoW)?

What Is Proof of Work (PoW)?
Contents
https://preview.redd.it/6xrtu2r56v151.png?width=1920&format=png&auto=webp&s=21a0175a00217614738e88b6c9d47fd07e0ae305
Introduction
Proof of Work (commonly abbreviated to PoW) is a mechanism for preventing double-spends. Most major cryptocurrencies use this as their consensus algorithm. That’s just what we call a method for securing the cryptocurrency’s ledger.
Proof of Work was the first consensus algorithm to surface, and, to date, remains the dominant one. It was introduced by Satoshi Nakamoto in the 2008 Bitcoin white paper, but the technology itself was conceived long before then.
Adam Back’s HashCash is an early example of a Proof of Work algorithm in the pre-cryptocurrency days. By requiring senders to perform a small amount of computing before sending an email, receivers could mitigate spam. This computation would cost virtually nothing to a legitimate sender, but quickly add up for someone sending emails en masse.

What is a double-spend?

A double-spend occurs when the same funds are spent more than once. The term is used almost exclusively in the context of digital money — after all, you’d have a hard time spending the same physical cash twice. When you pay for a coffee today, you hand cash over to a cashier who probably locks it in a register. You can’t go to the coffee shop across the road and pay for another coffee with the same bill.
In digital cash schemes, there’s the possibility that you could. You’ve surely duplicated a computer file before — you just copy and paste it. You can email the same file to ten, twenty, fifty people.
Since digital money is just data, you need to prevent people from copying and spending the same units in different places. Otherwise, your currency will collapse in no time.
For a more in-depth look at double-spending, check out Double Spending Explained.

Why is Proof of Work necessary?

If you’ve read our guide to blockchain technology, you’ll know that users broadcast transactions to the network. Those transactions aren’t immediately considered valid, though. That only happens when they get added to the blockchain.
The blockchain is a big database that every user can see, so they can check if funds have been spent before. Picture it like this: you and three friends have a notepad. Anytime one of you wants to make a transfer of whatever units you’re using, you write it down — Alice pays Bob five units, Bob pays Carol two units, etc.
There’s another intricacy here — each time you make a transaction, you refer to the transaction where the funds came from. So, if Bob was paying Carol with two units, the entry would actually look like the following: Bob pays Carol two units from this earlier transaction with Alice.
Now, we have a way to track the units. If Bob tries to make another transaction using the same units he just sent to Carol, everyone will know immediately. The group won’t allow the transaction to be added to the notepad.
Now, this might work well in a small group. Everyone knows each other, so they’ll probably agree on which of the friends should add transactions to the notepad. What if we want a group of 10,000 participants? The notepad idea doesn’t scale well, because nobody wants to trust a stranger to manage it.
This is where Proof of Work comes in. It ensures that users aren’t spending money that they don’t have the right to spend. By using a combination of game theory and cryptography, a PoW algorithm enables anyone to update the blockchain according to the rules of the system.

How does PoW work?

Our notepad above is the blockchain. But we don’t add transactions one by one — instead, we lump them into blocks. We announce the transactions to the network, then users creating a block will include them in a candidate block. The transactions will only be considered valid once their candidate block becomes a confirmed block, meaning that it has been added to the blockchain.
Appending a block isn’t cheap, however. Proof of Work requires that a miner (the user creating the block) uses up some of their own resources for the privilege. That resource is computing power, which is used to hash the block’s data until a solution to a puzzle is found.
Hashing the block’s data means that you pass it through a hashing function to generate a block hash. The block hash works like a “fingerprint” — it’s an identity for your input data and is unique to each block.
It’s virtually impossible to reverse a block hash to get the input data. Knowing an input, however, it’s trivial for you to confirm that the hash is correct. You just have to submit the input through the function and check if the output is the same.
In Proof of Work, you must provide data whose hash matches certain conditions. But you don’t know how to get there. Your only option is to pass your data through a hash function and to check if it matches the conditions. If it doesn’t, you’ll have to change your data slightly to get a different hash. Changing even one character in your data will result in a totally different result, so there’s no way of predicting what an output might be.
As a result, if you want to create a block, you’re playing a guessing game. You typically take information on all of the transactions that you want to add and some other important data, then hash it all together. But since your dataset won’t change, you need to add a piece of information that is variable. Otherwise, you would always get the same hash as output. This variable data is what we call a nonce. It’s a number that you’ll change with every attempt, so you’re getting a different hash every time. And this is what we call mining.
Summing up, mining is the process of gathering blockchain data and hashing it along with a nonce until you find a particular hash. If you find a hash that satisfies the conditions set out by the protocol, you get the right to broadcast the new block to the network. At this point, the other participants of the network update their blockchains to include the new block.
For major cryptocurrencies today, the conditions are incredibly challenging to satisfy. The higher the hash rate on the network, the more difficult it is to find a valid hash. This is done to ensure that blocks aren’t found too quickly.
As you can imagine, trying to guess massive amounts of hashes can be costly on your computer. You’re wasting computational cycles and electricity. But the protocol will reward you with cryptocurrency if you find a valid hash.
Let’s recap what we know so far:
  • It’s expensive for you to mine.
  • You’re rewarded if you produce a valid block.
  • Knowing an input, a user can easily check its hash — non-mining users can verify that a block is valid without expending much computational power.
So far, so good. But what if you try to cheat? What’s to stop you from putting a bunch of fraudulent transactions into the block and producing a valid hash?
That’s where public-key cryptography comes in. We won’t go into depth in this article, but check out What is Public-Key Cryptography? for a comprehensive look at it. In short, we use some neat cryptographic tricks that allow any user to verify whether someone has a right to move the funds they’re attempting to spend.
When you create a transaction, you sign it. Anyone on the network can compare your signature with your public key, and check whether they match. They’ll also check if you can actually spend your funds and that the sum of your inputs is higher than the sum of your outputs (i.e., that you’re not spending more than you have).
Any block that includes an invalid transaction will be automatically rejected by the network. It’s expensive for you to even attempt to cheat. You’ll waste your own resources without any reward.
Therein lies the beauty of Proof of Work: it makes it expensive to cheat, but profitable to act honestly. Any rational miner will be seeking ROI, so they can be expected to behave in a way that guarantees revenue.

Proof of Work vs. Proof of Stake

There are many consensus algorithms, but one of the most highly-anticipated ones is Proof of Stake (PoS). The concept dates back to 2011, and has been implemented in some smaller protocols. But it has yet to see adoption in any of the big blockchains.
In Proof of Stake systems, miners are replaced with validators. There’s no mining involved and no race to guess hashes. Instead, users are randomly selected — if they’re picked, they must propose (or “forge”) a block. If the block is valid, they’ll receive a reward made up of the fees from the block’s transactions.
Not just any user can be selected, though — the protocol chooses them based on a number of factors. To be eligible, participants must lock up a stake, which is a predetermined amount of the blockchain’s native currency. The stake works like bail: just as defendants put up a large sum of money to disincentivize them from skipping trial, validators lock up a stake to disincentivize cheating. If they act dishonestly, their stake (or a portion of it) will be taken.
Proof of Stake does have some benefits over Proof of Work. The most notable one is the smaller carbon footprint — since there’s no need for high-powered mining farms in PoS, the electricity consumed is only a fraction of that consumed in PoW.
That said, it has nowhere near the track record of PoW. Although it could be perceived as wasteful, mining is the only consensus algorithm that’s proven itself at scale. In just over a decade, it has secured trillions of dollars worth of transactions. To say with certainty whether PoS can rival its security, staking needs to be properly tested in the wild.

Closing thoughts

Proof of Work was the original solution to the double-spend problem and has proven to be reliable and secure. Bitcoin proved that we don’t need centralized entities to prevent the same funds from being spent twice. With clever use of cryptography, hash functions, and game theory, participants in a decentralized environment can agree on the state of a financial database.
submitted by D-platform to u/D-platform [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Bitcoin miner full 2018 Easy mining. MASSIMI HASH RATE BTC \ BINANCE USA FONDAMENTALE PER LE ALTCOIN Hashing, Encryption, Blockchain & Bitcoin Mining with ... When do you get Paid NiceHash mining Payout rate bitcoin ... Binance Launches Crypto Mining Pool Amid Centralization Concerns Binance Bot Tutorial - Intro Python Auto Trading Software - Chapter 1 Hashflare Bitcoin Mining  How To Start Mining And ROI Review (Huge Profits) Cryptocurrency Mining Algorithms NiceHash Mining 12-23-17 Payout to internal wallet - YouTube Best Algorithm For NiceHash Bitcoin Mining - YouTube

The first example of merged mining took place in 2012 when Namecoin switched from a proof-of-work (PoW) mining algorithm to the auxiliary proof-of-work (AuxPoW) algorithm which facilitates merged mining. Through this process, Bitcoin miners could now also use their hash rate to mine on the Namecoin blockchain. Binance Academy has described ... The SHA-256 or “secure hash algorithm 256”, is just a specific way of hashing. The same way we could have named our previous example for hashing the “99Bitcoins hashing method”. Using hashing helps the the Bitcoin network stay immuned to alteration and fraud – but more about that in a later video. Regarding Bitcoin mining, there are four primary paradigm shifts (and five phases) in these ten years: Satoshi “and his friends”: over the first few months of the blockchain, its mining difficulty remained constant, indicating that mining was either conducted by (1) a single individual or (2) a coordinated group of people. CPU (Central Processing Unit): initially, Bitcoin was publicly ... The Most Common C ryptocurrency Mining Algorithms SHA-256 Algorithm: SHA stand for “Secure hash Algorithm” (SHA-256) generates unique 256-bit (32-byte) signature for a text string. Block processing time for SHA-256 generally ranges from six to ten minutes and requires hash rates at the Giga hashes per second (GH/s). Multi switching algorithm. Payouts as low as 0.001 BTC. Total control over your mining operation. Dedicated customer support . ENTERPRISE SOLUTION NiceHash Private Endpoint. NiceHash Private Endpoint solution is designed for medium-sized and large mining farms that want to optimize their connection to NiceHash and secure maximum performance and earnings. learn more. How does NiceHash work for ... Bitcoin Mining is the process of using specialized computer hardware to earn Bitcoin. The annual production of Bitcoin via mining is $3.5 Billion dollars, with most of that Bitcoin going to Bitcoin miners. As miners earn rewards in Bitcoin, their profits can change greatly on market conditions – making Bitcoin mining a high risk / high reward industry. Anyone can join the Bitcoin network and ... What is a Bitcoin hash and SHA-256. SHA-256 is a secure encryption algorithm that has gained popularity due to the Bitcoin code. The abbreviation SHA is the Secure Hash Algorithm, and 256 means that the cryptocurrency algorithm generates a 256-bit hash, i.e., a string of 256 bits. The hash rate for SHA-256-based cryptocurrencies is calculated in units of Gigahash per second (GH/s). It takes ... In this case, the hash rate represents how much computer power is being invested in Bitcoin mining. If the network's hash rate increases, the Bitcoin protocol will automatically adjust the mining difficulty so that the average time needed to mine a block remains close to 10 minutes. In contrast, if several miners decide to stop mining, causing the hash rate to drop significantly, the mining ... DigiByte (DGB) is a decentralized UTXO blockchain that was launched in January 2014. The project is built on the code of Litecoin, but with several modifications.; In February 2014, the project introduced DigiShield, a real-time difficulty adjustment mechanism which stablizes block time despite exponential changes in mining hash power.; DGB has a maximum supply of 21 billion, which will be ... Ethash verwendet die Hash-Algorithmen "Keccak-256" und "Keccak-512", was aufgrund der gleichzeitigen Entwicklung der Verschlüsselungsstandards SHA-3 (Secure Hash Algorithm 3) zusammen mit der Ethash-Entwicklung zu Verwirrung führt.

[index] [15410] [8136] [11955] [20839] [4761] [22966] [16232] [22691] [12419] [12323]

Bitcoin miner full 2018 Easy mining.

Now a days bitcoin is more popular cryptocurrency. Everyone wants to mine bitcoin. NiceHash is the world’s largest crypto-mining marketplace. Sellers are pro... This video of Cryptocurrency Mining Algorithms gives an idea of algorithms requires for mining cryptocurrencies. It helps you to learn about mining algorithms. The video shows topics like: 1. What ... #criptovalute #accriptovalute #bitcoin come funziona #btc #altcoin #binance #investire #guadagnare #il bitcoin L'hash rate del BTC ha raggiunto nuovi massimi è un buon segno ? Binance USA per ... Binance Bot Tutorial, Trading Bitcoin, Ethereum and other Cryptocurrencies on the Binance Exchange. Learn How To build an algorithmic cryptocurrency trading bot with Python - email ... NiceHash Mining 12-23-17 Payout to internal wallet Easy bitcoin address setup. Every 4-5 days you can withdraw your mined bitcoins.Get massive hashing power for mining Bitcoin from your own pc with our unique algorithm. Approximately after 4-5 ... Bill Gates: Microsoft board, Bitcoin Price, Taxes and Strategy microsoft PROMO 6,526 watching Live now HOWTO create a HASHFLARE account and start mining for BITCOIN today how to use hashflare ... This video illustrates the concepts of Hashing, Encryption, Blockchain and Bitcoin Mining by the use of straightforward Python code. It is from a free Webina... In this video I go over How often you get your mining payment from nicehash if you have your own external wallet or if you have a nicehash bitcoin wallet Binance Pool has received mixed responses from the crypto community, with some commentators expressing concerns that Binance's pool will result in a further centralization of Bitcoin ( BTC ) hash ...

#